A global assessment of cancer genomic alterations in epigenetic mechanisms

Muhammad A Shah, Emily L Denton, Cheryl H Arrowsmith, Mathieu Lupien and Matthieu Schapira

Abstract

Background

The notion that epigenetic mechanisms may be central to cancer initiation and progression is supported by recent next-generation sequencing efforts revealing that genes involved in chromatin-mediated signaling are recurrently mutated in cancer patients.

Results

Here, we analyze mutational and transcriptional profiles from TCGA and the ICGC across a collection 441 chromatin factors and histones. Chromatin factors essential for rapid replication are frequently overexpressed, and those that maintain genome stability frequently mutated. We identify novel mutation hotspots such as K36M in histone H3.1, and uncover a general trend in which transcriptional profiles and somatic mutations in tumor samples favor increased transcriptionally repressive histone methylation, and defective chromatin remodeling.

Conclusions

This unbiased approach confirms previously published data, uncovers novel cancer-associated aberrations targeting epigenetic mechanisms, and justifies continued monitoring of chromatin-related alterations as a class, as more cancer types and distinct cancer stages are represented in cancer genomics data repositories.

Continue reading „A global assessment of cancer genomic alterations in epigenetic mechanisms“

Variation in cancer risk among tissues can be explained by the number of stem cell divisions

Tomasetti and Vogelstein show that the lifetime risk of cancers of many different types is strongly correlated with the total number of divisions of the normal self-renewing cells maintaining that tissue’s homeostasis. These results suggest that only a third of the variation in cancer risk among tissues is attributable to environmental factors or inherited predispositions. The majority is due to bad luck, that is, random mutations arising during DNA replication in normal, noncancerous stem cells.

Tomasetti C, Vogelstein B (2015): Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2 January 2015: Vol. 347 no. 6217 pp. 78-81 DOI: 10.1126/science.1260825