Quantum measurements more precise than ever before: New study aims to advance quantum computing

An international team of researchers, including scientists from Jena, has succeeded in developing a new and particularly precise type of measurement in tiny quantum systems. Applications are conceivable in semiconductor manufacturing, for example, but also in mobile radio technology or microscopy in the future. Experimental tests to prove the study were carried out on Germany’s first quantum computer, the Fraunhofer „QSystemOne“, among others. The researchers have now published their results in the journal „Nature Physics“.

Quelle: IDW Informationsdienst Wissenschaft

Breakthrough in the development of novel protein-based agents against immune deficiencies

International research team scores quantum leap with the help of computational protein design

Quelle: IDW Informationsdienst Wissenschaft

100 years of quantum is just the beginning …! World Quantum Day 2022

On occasion of the World Quantum Day 2022 – An International Round Table

Contribution of the German Physical Society (DPG) concerning World Quantum Day

https://www.dpg-physik.de/veranstaltungen/2022/world-quantum-day-2022

Quelle: IDW Informationsdienst Wissenschaft

Topology in biology

A phenomenon known from quantum systems could now make its way into biology:
In a new study published in Physical Review X, researchers from the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) in Göttingen show that the notion of topological protection can also apply to biochemical networks. As these are typically very complex and yet remain very stable against changes, topology can help in the emergence of robust oscillations. The model which the scientists developed makes the topological toolbox, typically used only to describe quantum systems, now also available to biology.

Quelle: IDW Informationsdienst Wissenschaft

Fast IR imaging-based AI identifies tumor type in lung cancer

The prognosis and effective therapies differ based on the type of lung cancer. While it previously took several days to precisely determine the underlying mutation, a research team has been able to reliably perform this determination in just one step using a combination of quantum cascade laser-based infrared microscopy and artificial intelligence.

Quelle: Sciencedaily

Quantum birds

New findings on magnetic sensing in birds are presented by an international team of researchers led by the Universities of Oldenburg and Oxford. The results are published in the journal Nature.

Quelle: IDW Informationsdienst Wissenschaft

On the dot: Novel quantum sensor provides new approach to early diagnosis via imaging

A phenomenon called ‚oxidative stress‘ is seen in affected organs during the early stages of certain difficult-to-treat diseases like cancer and kidney dysfunction. Detecting oxidative stress could thus enable early diagnosis and preventive treatments. But, the in vivo measurement of oxidative stress caused by both oxidation and reduction has historically been difficult. Now, scientists have developed an advanced quantum sensor technology that can detect ‚oxidative stress‘ non-invasively throughout the body using fluorescent imaging and MRI.

Quelle: Sciencedaily

Implications of quantum metabolism and natural selection for the origin of cancer cells and tumor progression

Energy transfer in material solids is driven primarily by differences in intensive thermodynamic quantities such as pressure and temperature. The crucial observation  in quantum-theoretical models was the consideration of the heat capacity as associated with the vibrations of atoms in a crystalline solid. However, living organisms are essentially isothermal. Because of very little differences in temperature between different parts of a cell it is assumed that energy flow in living organisms is mediated by differences in the turnover time of various metabolic processes in the cell, which occur in cyclical fashion. It has been shown that the cycle time of these metabolic processes is related to the metabolic rate, that is the rate at which the organism transforms the free energy of whatever source into metabolic work, maintenance of constant temperature and structuraland functional organization of the cells. Quantum Metabolism exploits the methodology of the quantum theory of solids to provide a molecular level which derives new rules relating metabolic rate and body size.

Davies P, Lloyd A, Demetrius LA, Tuszynski, JA (2012) Implications of quantum metabolism and natural selection for the origin of cancer cells and tumor progression. Citation: AIP Advances 2, 011101 (2012); doi: 10.1063/1.3697850

Einstein A (1920), Schallausbreitung in teilweise dissozieirten Gasen

Einstein A (1924) Quantentheorie des einatomigen, idealen Gases

Quantum entanglement between the electron clouds of nucleic acids in DNA

Rieper, Anders and Vedral modelled the electron clouds of nucleic acids in a single strand of DNA as a chain of coupled quantum harmonic oscillators with dipole-dipole interaction between nearest neighbours. As a main result, the entanglement contained in the chain coincides with the binding energy of the molecule. Derived in the limit of long distances and periodic potentials analytic expressions linking the entanglement witnesses to the energy reduction due to the quantum entanglement in the electron clouds.

Rieper E, Anders J, Vedral V (2011) Quantum entanglement between the electron clouds of nucleic acids in DNA. arxiv.org/abs/1006.4053

 

Wholeness and implicate order: “Deep” quantum chemistry and cell consciousness: quantum chemistry controls genes and biochemistry to give cells and higher organism’s consciousness and complex behavior

Bohm used the term ‘holomovement’ which is an unbroken and undivided totality and carries an implicate order which is he totality of an order including both the manifested and non-manifested aspects of the order. Non-local quantum phenomena reside in a subtler level than quantum level that is the quantum potential which sustains intimately within the underlying implicates order and the quantum processes are driven by information from quantum potential. A global quantum field of a cell, which can be described as a super orbital, provides many levels of interactions among all particles of a cell. From quantum metabolism pint of view all electrons that are contained in one system are inseparable from eachother. In a cell the cytoplasm is a gel made of up to 30% proteins, and the structure of this gel is very much like a liquid crystal which provides collective properties of the electrons.

All these electrons within this super orbital of molecules and co-enzymes of the cell, including all the many small molecules embedded in these large biomolecules, and cofactors transporting electrons are making up one huge structure that is a global cell orbital.

Bohm D (1980) Wholeness and implicate order. Routledge Classics Eds., London and New York 191-247.

Ventegodt S, Hermansen TD, Flensborg-Madsen T, Nielsen ML and Merrick J (2006) A theory of “Deep” quantum chemistry and cell consciousness: quantum chemistry controls genes and biochemistry to give cells and higher organism’s consciousness and complex behavior. The Scientific World Journal 6, 1441-1453.

Quantum Tunnelling to the Origin and Evolution of Life

Quantum tunnelling is a phenomenon which becomes relevant at the nanoscale and below. It is a paradox from the classical point of view as it enables elementary particles and atoms to permeate an energetic barrier without the need for sufficient energy to overcome it. Tunnelling is being of vital importance for life: physical and chemical processes can be traced directly back to the effects of quantum tunnelling. These processes include the   prebiotic chemistry as well as the function of biomolecular nanomachines and has many highly important implications that can be derived from to the field of molecular, prebiotic chemistry and biological evolution, respectively.

Trixler, F (2013) Quantum Tunnelling to the Origin and Evolution of Life. Curr Org Chem. 2013 Aug; 17(16): 1758–1770. doi: 10.2174%2F13852728113179990083

Quantum Teleportation and Von Neumann Entropy

From the aspect of the quantum information theories, various quantum entropies are possibly computed at each stage, which ensures the emergence of the entangled states in the intermediate step. If a single qubit quantum teleportation is near the computational basis, the quantum measurement is dominantly responsible for the joint entropy at the final stage. If it is far from the computational basis, this dominant responsibility is moved into the quantum measurement of system. Therefore, the relative entropy can be regarded as a measure for distance between two different quantum states like trace distance or fidelity. Some relative entropies become infinity, which indicates the non-trivial intersection of the support of one quantum state with kernel of the other quantum state.

You Hwan Ju, Eylee Jung1, Mi-Ra Hwang, D. K. Park, Hungsoo Kim, Min-Soo Kim, Jin-Woo Son, Sahng-Kyoon Yoo, S. Tamaryan (2007) Quantum Teleportation and Von Neumann Entropy. arXiv:0707.1227v1

A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation

Low non-specific, low intensity laser illumination (635, 670 or 830 nm) apparently enhances centriole replication and promotes cell division, what is the opposite of a desired cancer therapy. In the contrary, centrioles are sensitive to coherent light. Then higher intensity laser illumination – still below heating threshold – may selectively target centrioles, impair mitosis and be a beneficial therapy against malignancy. If centrioles utilize quantum photons for entanglement, properties of centrosomes/centrioles approached more specifically could be useful for therapy. Healthy centrioles for a given organism or tissue differentiation should then have specific quantum optical properties detectable through some type of readout technology. An afflicted patient’s normal cells could be examined to determine the required centriole properties which may then be used to generate identical quantum coherent photons administered to the malignancy. In this mode the idea would not be to destroy the tumor – relatively low energy lasers would be used – but to “reprogram” or redifferentiate the centrioles and transform the tumor back to healthy well differentiated tissue.

Hameroff, SR (2004) A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation. BioSystems 77, 119–136