Complex Organic Molecules On Saturn’s Moon Enceladus

Under its icy crust, Saturn’s moon Enceladus conceals an global ocean of liquid water. A detector on the Cassini space probe detected ice particles propelled from Enceladus that contain high concentrations of organic substances. They exhibit the structures typical of highly complex macromolecular compounds. „This is the first evidence of large organic molecules from an extraterrestrial aquatic world. They can be generated only by equally complex chemical processes,“ states planetologist Assistant Professor Dr Frank Postberg, study director and researcher at the Institute for Earth Sciences at Heidelberg University. The research results were published in “Nature”. (Mehr in: Pressemitteilungen – idw – Informationsdienst Wissenschaft)

Enzyme designers: Simulation of the AsqJ enzyme opens up new options for pharmaceutical chemistry

Practically all biochemical processes involve enzymes that accelerate chemical reactions. A research team from the Technical University of Munich (TUM) has now for the first time deciphered the molecular mechanism of the enzyme AsqJ. They see potential applications in the production of pharmaceutically active molecules, for example. (Mehr in: Pressemitteilungen – idw – Informationsdienst Wissenschaft)

A backup copy in the central brain: How fruit flies form orientation memory

Gaseous neurotransmitters play an important role in the short-term orientation memory of Drosophila / Scientist decode biochemical processes (Mehr in: Pressemitteilungen – idw – Informationsdienst Wissenschaft)

Multiplexed Morse signals from cells

How many sorts, in how many copies? The biochemical processes that take place in cells require specific molecules to congregate and interact in specific locations. A novel type of high-resolution microscopy developed at the Max Planck Institute for Biochemistry in Martinsried and Harvard University already allows researchers to visualize these molecular complexes and identify their constituents. Now they can also determine the numbers of each molecular species in these structures. Such quantitative information is valuable for the understanding of cellular mechanisms and how they are altered in disease states. The new technique is described in Nature Methods. (Mehr in: Pressemitteilungen – idw – Informationsdienst Wissenschaft)

Bioelectrochemical processes have the potential to one day replace petrochemistry

Researchers at UFZ and the University of Queensland have found that the electrification of the white biotechnology is not merely a green dream, but an alternative to petrochemistry with realistic economical potential. Compared to classical sugar based bio-processes, bioelectrochemical processes promise improved yields, which could turn out to be a real game changer. The next generation of bio-production facilities may not only become more environmentally friendly, but also more economically competitive. (Mehr in: Pressemitteilungen – idw – Informationsdienst Wissenschaft)

Quantum Tunnelling to the Origin and Evolution of Life

Quantum tunnelling is a phenomenon which becomes relevant at the nanoscale and below. It is a paradox from the classical point of view as it enables elementary particles and atoms to permeate an energetic barrier without the need for sufficient energy to overcome it. Tunnelling is being of vital importance for life: physical and chemical processes can be traced directly back to the effects of quantum tunnelling. These processes include the   prebiotic chemistry as well as the function of biomolecular nanomachines and has many highly important implications that can be derived from to the field of molecular, prebiotic chemistry and biological evolution, respectively.

Trixler, F (2013) Quantum Tunnelling to the Origin and Evolution of Life. Curr Org Chem. 2013 Aug; 17(16): 1758–1770. doi: 10.2174%2F13852728113179990083