How Plants Heal Wounds – Mechanical Forces Guide Direction of Cell Division

Plants are very robust and survive harsh environments, owing in part to their remarkably efficient wound-healing capacity. For over a century, scientists aimed to understand it in more detail. A new collaborative study at the Institute of Science and Technology Austria (ISTA) now shows that the process is quite straightforward, revolving around pressure and forces. The results, published in Developmental Cell, hold promise for advancing agriculture.

Quelle: IDW Informationsdienst Wissenschaft

New mechanism for regulating cell division in the bacterial pathogen Klebsiella uncovered

Klebsiella pneumoniae is one of the most common and most dangerous bacterial pathogens impacting humans, causing infections of the gastrointestinal tract, pneumonia, wound infections and even blood poisoning. With the aim of discovering therapeutically exploitable weaknesses in Klebsiella, a research team from the Balance of the Microverse Cluster of Excellence at the University of Jena, Germany has taken a close look at the molecular biology of the bacteria and was able to uncover the importance of a small, non-coding ribonucleic acid (sRNA for short) for the gene regulation of K. pneumoniae. They report their findings in the journal “Proceedings of the National Academy of Sciences”.

Quelle: IDW Informationsdienst Wissenschaft

Lysosomes prove to be quick-change artists

Lysosomes play an important role in cells and tissues, controlling not only the degradation of substances but also cell division and growth. A team led by Professor Volker Haucke and Dr. Michael Ebner at the FMP has investigated how these two functions are related to nutrient availability in the cell. The researchers were able to show for the first time that lysosomes undergo a massive transformation. A signaling lipid acts as a switch between the two states. The findings, published in the journal Cell, could be used to develop drugs that specifically stimulate cells from patients with neurodegenerative or metabolic diseases to break down harmful protein molecules inside the cell.

Quelle: IDW Informationsdienst Wissenschaft

Playing hide and seek in the centromere

Centromeres, the DNA sections often found at the center of the chromosomes, display enormous interspecies diversity, despite having the same vital role during cell division across almost the entire tree of life. An international team of researchers has discovered that the variation in centromere DNA regions can be strikingly large even within a single species. The findings, now published in the journal Nature, shed light on the molecular mechanisms of rapid centromere evolution and their potential role in the formation of new species.

Quelle: IDW Informationsdienst Wissenschaft

How cells gain control over their bacterial symbionts

Biology: Publication in Current Biology

Modern eukaryotic cells contain numerous so-called organelles, which once used to be independent bacteria. In order to understand how these bacteria were integrated into the cells in the course of evolution and how they are controlled, a research team from the Institute of Microbial Cell Biology at Heinrich Heine University Düsseldorf (HHU) has examined the single-celled flagellate Angomonas deanei, which contains a bacterium that was taken up relatively recently. In the journal Current Biology, the biologists now describe how certain proteins in the flagellate control the cell division process of the bacterium, among other things.

Quelle: IDW Informationsdienst Wissenschaft

Structure of key protein for cell division puzzles researchers

Human cell division involves hundreds of proteins at its core. Knowing the 3D structure of these proteins is pivotal to understand how our genetic material is duplicated and passed through generations. The groups of Andrea Musacchio and Stefan Raunser at the Max Planck Institute of Molecular Physiology in Dortmund are now able to reveal the first detailed structure of a key protein complex for human cell division known as CCAN. By using cryo-electron microscopy, the researchers show important features of the complex’s 16 components and challenge previous assumptions about how the complex is able to recognize the centromere, a crucial region of chromosomes in cell division.

Quelle: IDW Informationsdienst Wissenschaft

Dividing walls: How immune cells enter tissue

To get to the places where they are needed, immune cells not only squeeze through tiny pores. They even overcome wall-like barriers of tightly packed cells. Scientists at the Institute of Science and Technology Austria (ISTA) have now discovered that cell division is key to their success. Together with other recent studies, their findings published in Science magazine give the full picture of a process just as important for healing as for the spread of cancer.

Quelle: IDW Informationsdienst Wissenschaft

Crowning a quest into a very well-guarded secret: Structure of the kinetochore corona finally revealed

During cell division the 23 chromosomes must be first copied and later delivered to two newly forming daughter cells. At least in healthy cells, the result is astonishingly flawless, and no chromosome is ever lost. A multilayered protein structure called the kinetochore executes the chromosome delivery program. In a highly interdisciplinary collaborative tour-de-force, the groups of Andrea Musacchio and Stefan Raunser at the Max Planck Institute of Molecular Physiology studied the outermost layer of this structure, the kinetochore corona. They revealed the structural organization of the corona’s main building block, the RZZ complex, and deciphered the mechanism of corona assembly.

Quelle: IDW Informationsdienst Wissenschaft

Ground-breaking study reveals dynamics of DNA replication ‘licensing’

A new study has illuminated an important process that occurs during cell division and is a likely source of DNA damage under some circumstances, including cancer.

Quelle: Sciencedaily

New findings about cancer cell growth may hold promise for future cancer treatments

For a cell to grow and divide, it needs to produce new proteins. This also applies to cancer cells. Researchers have now investigated the protein eIF4A3 and its role in the growth of cancer cells. The study shows that by blocking or reducing the production of this protein, other processes arise that cause the growth and cell division of cancer cells to cease and eventually die.

Quelle: Sciencedaily

Discovery within human cell cycle process to bring new understanding of cellular diseases

New research has uncovered an essential mechanism coordinating the processes of cell division and adhesion within humans. This discovery has profound potential for advancing understanding of cell adhesion signalling in cancerous tumor progression and metastasis.

Quelle: Sciencedaily

Chromosomes separation under focus

During cell division, chromosomes are duplicated and separated so that one copy of each chromosome is inherited by each of the two emerging daughter cells. Correct distribution of chromosomes requires high accuracy and defects in this process can cause aberrant distribution of chromosomes and facilitate cancer development. By analyzing the structure of the protein responsible for chromosome separation, a team has shed light on the mechanisms controlling this essential player in cell division.

Quelle: Sciencedaily

Manufacturing the core engine of cell division

It´s a cellular process going on since one billion years, yet we are not able to replicate it, nor to fully understand it. Mitosis, the mechanism of cell division that is so important for life, involves more than 100 proteins at its core. Now, the group of Prof. Dr. Andrea Musacchio from the Max Planck Institute of Molecular Physiology in Dortmund has been able to fully reconstitute the engine of the mitosis machinery, called kinetochore. Being able to model a functioning kinetochore is the first step towards the making of artificial chromosomes, that may one day be used to restore missing functions in cells.

Quelle: IDW Informationsdienst Wissenschaft

Process for eliminating unneeded cells may also protect against cancer

Biologists find cell extrusion, a process that helps organisms eliminated unneeded cells, is triggered when cells can’t replicate their DNA during cell division. In humans, extrusion may serve as a way for the body to eliminate cancerous or precancerous cells.

Quelle: Sciencedaily

Switching Off the „Survival Protein“ for Cancer Cells

It is called the „survival protein“ because it plays a central role in the growth of cancer cells: survivin influences two important processes in the body’s cells at the same time – cell death and cell division. Chemists and biologists at the University of Duisburg-Essen (UDE) have now succeeded in developing a precise molecule that can bind the protein’s surface at a defined site and switch it off. „Nature Communications“ covers the topic.

Quelle: IDW Informationsdienst Wissenschaft

Variation in cancer risk among tissues can be explained by the number of stem cell divisions

Tomasetti and Vogelstein show that the lifetime risk of cancers of many different types is strongly correlated with the total number of divisions of the normal self-renewing cells maintaining that tissue’s homeostasis. These results suggest that only a third of the variation in cancer risk among tissues is attributable to environmental factors or inherited predispositions. The majority is due to bad luck, that is, random mutations arising during DNA replication in normal, noncancerous stem cells.

Tomasetti C, Vogelstein B (2015): Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2 January 2015: Vol. 347 no. 6217 pp. 78-81 DOI: 10.1126/science.1260825

A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation

Low non-specific, low intensity laser illumination (635, 670 or 830 nm) apparently enhances centriole replication and promotes cell division, what is the opposite of a desired cancer therapy. In the contrary, centrioles are sensitive to coherent light. Then higher intensity laser illumination – still below heating threshold – may selectively target centrioles, impair mitosis and be a beneficial therapy against malignancy. If centrioles utilize quantum photons for entanglement, properties of centrosomes/centrioles approached more specifically could be useful for therapy. Healthy centrioles for a given organism or tissue differentiation should then have specific quantum optical properties detectable through some type of readout technology. An afflicted patient’s normal cells could be examined to determine the required centriole properties which may then be used to generate identical quantum coherent photons administered to the malignancy. In this mode the idea would not be to destroy the tumor – relatively low energy lasers would be used – but to “reprogram” or redifferentiate the centrioles and transform the tumor back to healthy well differentiated tissue.

Hameroff, SR (2004) A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation. BioSystems 77, 119–136